

We design thoughtful places that uplift communities

40 years 13,000+ homes 400+ awards multifamily experts

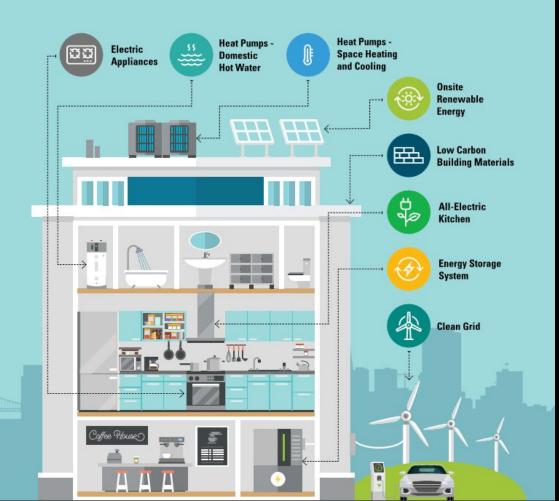
22 (of 29 projects) **On the boards in 2021**

On the boards in 2019

8

THE BUILDING DECARBONIZATION PRACTICE GUIDE

A Zero Carbon Future for the Built Environment

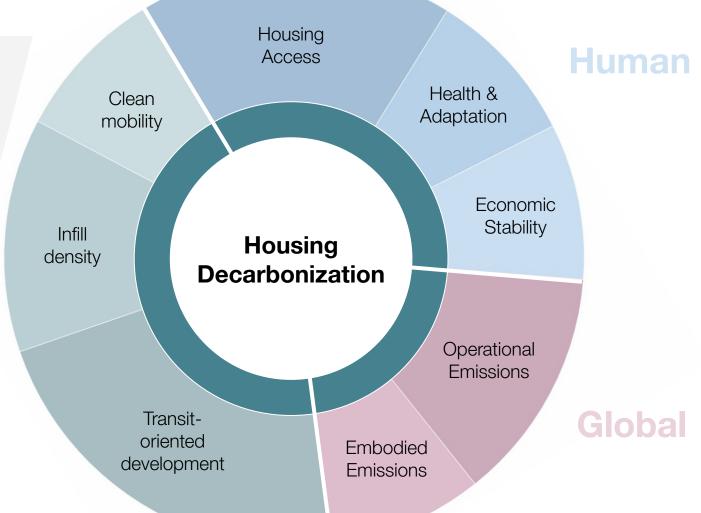

VOLUME 3:

» Multifamily Residential, Hotels/ Motels, and Similar Buildings

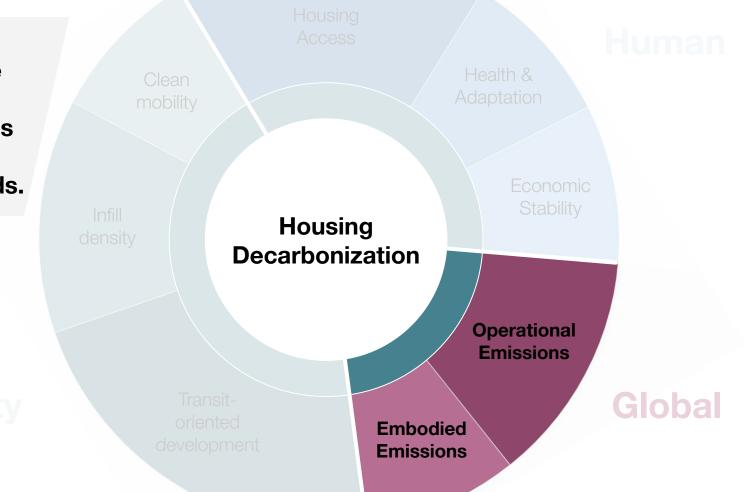
ACKNOWLEDGEMENTS

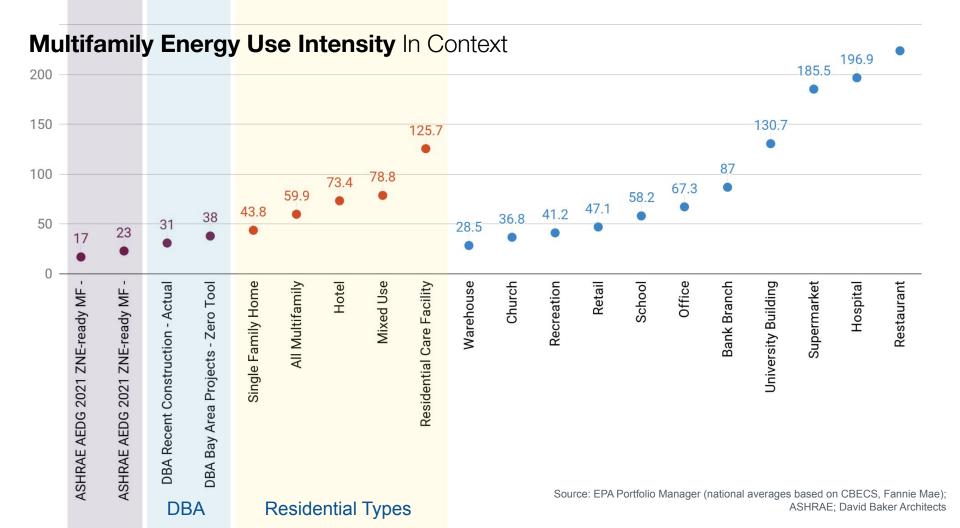
The William J. Worthen Foundation would like to thank the entire Working Group of experts behind the development of the Building Decarbonization Practice Guide.

RELEASE DATE October 28, 2021



What does it mean to decarbonize housing?


Housing impacts climate at multiple scales.


Impacts are not all easy to measure.

Emissions reduction of the building itself is usually the focus of policy and design standards.

Multifamily Decarbonization Design Priorities

- 1.) Build to the **maximum density** that economics allows to support permanent residence
- 2. Eliminate permanent fossil fuel infrastructure on-site
- 3.) Establish and design for the everyday needs of target residents and operators

Multifamily Decarbonization Design Priorities

- Build to the maximum density that economic allows to support permanent residence
- 2.) Eliminate permanent fossil fuel infrastructure on-site
 - Establish and design for the everyday needs of target residents and operators
- 4.)

5.

3.

- Target <25 kbtu/sf-year gross site energy use intensity
-) Maximize benefit of solar PV (and storage) to residents and housing providers
- 6. Plan thoughtfully for **electric vehicles** another other low-carbon modes of transportation
- 7.) Exercise **simple**, **efficient material use** and industrialized construction methods

Multifamily Decarbonization Design Priorities

Build to the maximum density that economics allows to support permanent residence

- Eliminate permanent fossil fuel infrastructure on-site
- Establish and design for the everyday needs of target residents and operators
- Target <25 kbtu/sf-year gross site energy use intensity
- Maximize benefit of solar PV (and storage) to residents and housing providers
- 6.

7.

2.

3.

4.

5.

- Plan thoughtfully for electric vehicles another other low-carbon modes of transportation
-) Exercise simple, efficient material use and industrialized construction methods
- 8. Target embodied emissions of structure, refrigerants, insulation and cladding
- 9. Work to reduce grid emissions

Today's Focus

Build to the maximum density that economics allows to support permanent residence

2. 3. 4. 5. 6. 8.

9.

- Eliminate permanent fossil fuel infrastructure on-site
- Establish and design for the everyday needs of target residents and operators
- Target <25 kbtu/sf-year gross site energy use intensity
- Maximize benefit of solar PV (and storage) to residents and housing providers
- Plan thoughtfully for electric vehicles another other low-carbon modes of transportation
- Exercise simple, efficient material use and industrialized construction methods
- Target embodied emissions of structure, refrigerants, insulation and cladding
- Work to reduce grid emissions

What is already electric?

	New Market Rate	New Affordable	Existing Affordable
Fire place	X	NA	NA
Range/Cooktop	X	\checkmark	X
Space heating	\checkmark	\checkmark	?
Space cooling	\checkmark	\checkmark	\checkmark
BBQ	X	?	X
In-unit dryers	\checkmark	\checkmark	?
Common dryers	NA	?	X
Water heating	X	X	X

What is already electric?

New Construction

KNAACK

-

KNAACK

Design Process | Key decisions

- Understand local electrification incentives, REACH codes
- Set up for heat pump location and efficient hot water distribution

- Establish goals, owner requirements, resident service needs
- Early groundwork for resilience planning

- Ensure energy modeling capabilities, technical assistance and commissioning are built into consultant RFP
- Evaluating systems options know your success criteria
- Whole-building non-compliance model: PV and operating budget
- Resilience Planning

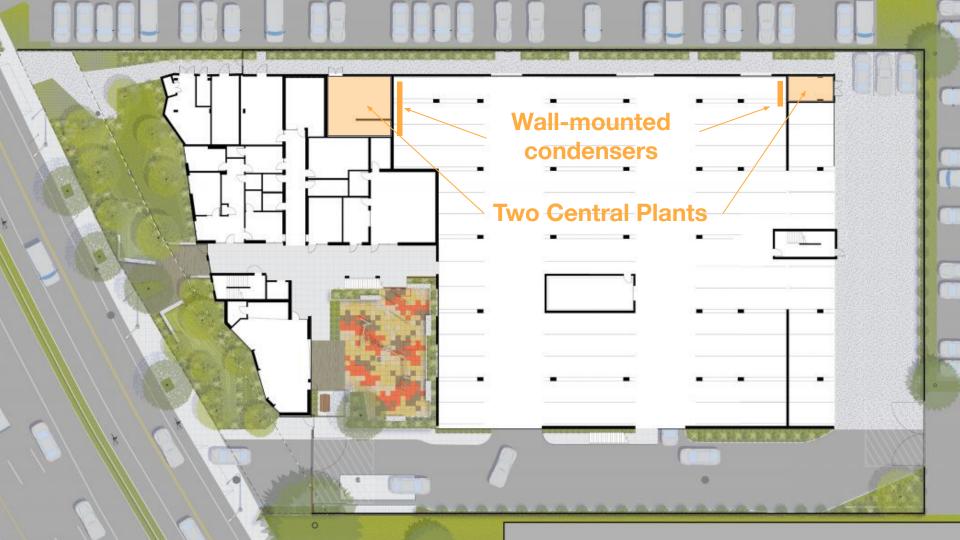
BUILD Program Incentives & Technical Assistance

Technical Assistance

Technical Assistance is available for low income all-electric residential building planning, project fuel-switching, lowemissions building design and technologies, and incentive application completion. Inquiries for technical assistance are now being accepted.

INQUIRE >

TRC


SMITHGROUP

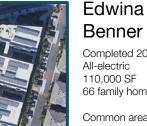
мітнūм

Edwina Benner Plaza CEC Central HPWH Pilot Demonstration

Completed Space Heating/Cooling Hot Water Ventilation Solar PV 2018 Minisplits Central CO2 heat pump Central supply, side-wall exhaust 125 kW array

Compact Distribution

	Gas + Solar Preheating	Electric HPWH	Cost Difference per Unit
	Gas boilers Storage tanks Solar thermal preheating All gas infrastructures and connection	Heat pumps Storage tanks Some PV (to be Opex neutral) Transformer upsize/additional transformer	
Central system (2016)	\$3,000	\$3,200	+\$200
Central system (2021)	\$3,200	\$2,200	-\$1,000
Individual system (2021)	\$4,800	\$2,500	-\$1,300


Transformer placement can change economy/technical feasibility of the project

Courtesy: Amelie Besson, MidPen Housing

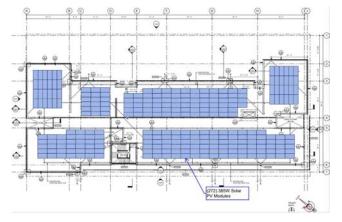
Operating Cost comparison

Benner Completed 2018

All-electric 110,000 SF 66 family homes

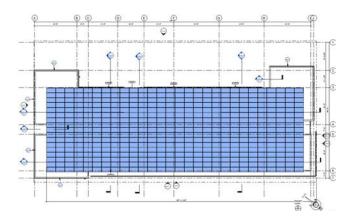
Common area energy costs 2019: -\$21

Crossing Completed 2015 Mixed Fuel 102,000 sf


58 family homes Common area

energy costs 2019: \$17.775

Same lot size, program, city, developer, architect, MEP engineer, and general contractor

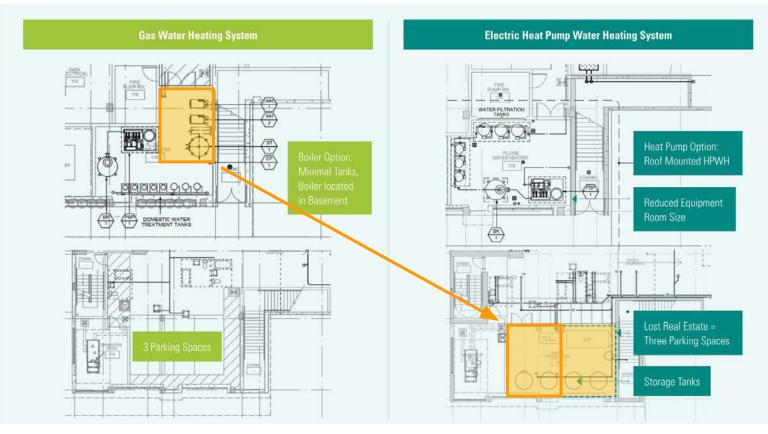

Courtesy: Amelie Besson, MidPen Housing

Housing as Energy Infrastructure?

No canopy: <u>38%</u> ZNE Offset **\$336,000** Cost **\$20,000** Annual Savings Annual house utilities covered by PV

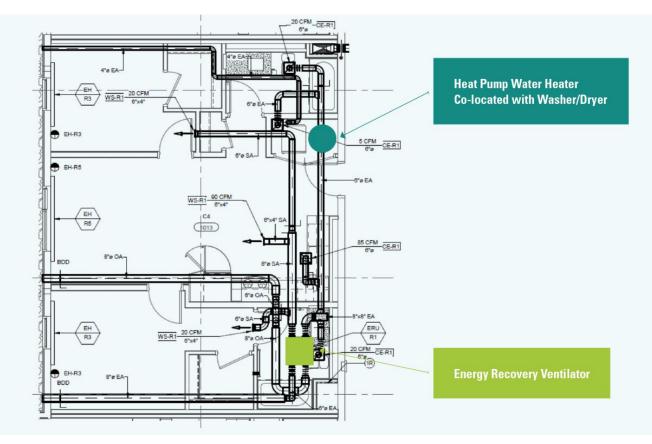
Elevated Canopy: <u>68%</u> ZNE Offset \$939,000 Cost

\$239,000 After Adjustments


This is after deducting \$300k from Federal Tax Credit and a credit of \$400k in increased loan based California Utility Allowance Calculator.

\$30,000 Annual Savings

Increased Annual Revenue from CUAC rent adjustments



Centralized heat pumps

Courtesy: Guttmann & Blaevoet Consulting Engineers | Building Decarbonization Practice Guide

Decentralized, in-unit heat pumps

Courtesy: Guttmann & Blaevoet Consulting Engineers | Building Decarbonization Practice Guide

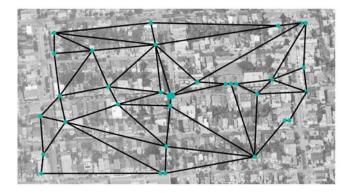
Semi-centralized heat pumps

Non-Recirculating Hot Water "Mini-Plants"

Resilience planning | How do we define resilient design?

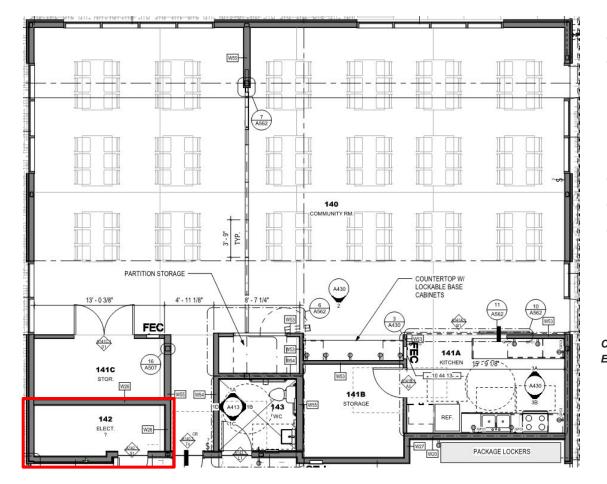
- Extending the useful life of the building (future-proofing)
- Keeping buildings running and staff supported during a critical event
- Keeping residents safe & well in livable homes

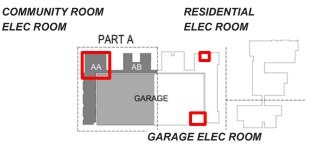
Resilience planning | what scale?


Residential Units

Residential Commons

Community



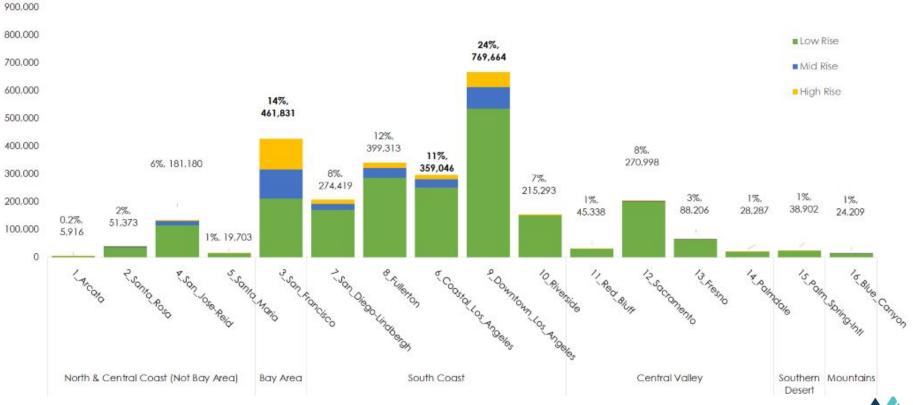

Resilience planning | Power failure in affordable & supportive housing

Resilience planning | Resilience Hub in Daly City

- Lights, outlets, refrigeration
- Battery Backup System:
 - 18kW dedicated PV
 - 15.2kW / 40kWh of capacity
 - (3) Tesla power walls
- 13-14 hours
- \$160,000 full cost
- \$6,500 "backup ready"

Resilience planning | Whole-building back-up system in New Orleans

- Master-metered 50-unit building
- Battery Backup System + ZNE design
 - high-efficiency HVAC
 - distributed heat pump hot water
 - 178kW solar array
 - 125kW / 371kWh capacity
 - (1) Dynapower battery system
- 8 hours
- \$350,000 for solar PV
- \$400,000 for batteries
- Applied solar tax credit + utility grant



Resilience planning | Back-up power take-aways

- Backing up the whole building on a larger battery (Tesla Powerpack) may be simpler and more cost-effective. But still expensive.
- Having decentralized, individual systems helps control in-rush current
- Elevators & recirculation pump loads are too big; typically need generators
- Separate life-safety systems from other back-up services
- Wiring for battery-ready is an option
- Tanked fuel can't sit around, must be used. Feed back to the grid
- Dispatchable generation is a thing (utility manages generators / batteries)

California Existing Multifamily Building Stock

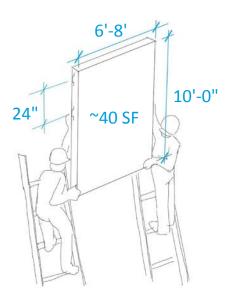
Building Typologies | For retrofit packages

			oomial gao forood an famaoo	Central Steam/Hydronic Boiler
	Cooling	No cooling In-unit system	No cooling In-unit system	No cooling In-unit system
4(DHW	In-unit non-condensing tank	In-unit/central non-condensing tank Central boiler	Central Non-condensing tank Central boiler

Non-energy issues!

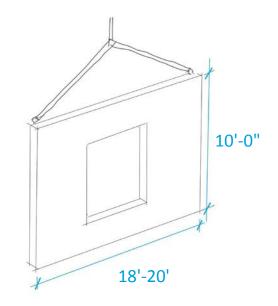
- No wall or roof insulation. Energy use and comfort are major issues
- Addressing deferred maintenance on general plumbing is a high priority
- Rooftop PV and electrification are also high owner priorities
- Major stucco damage and some interior pest and dry-rot damage
- Interior gyp and exterior stucco are both hot (asbestos)
- No exterior sheathing, inadequate and damaged lateral bracing

Retrofit Strategies | Menu of Options


Conventional

- Re-cladding/new weather barrier
- Manual, "drill & fill" insulation
- "Piggy-back" dual vinyl windows
- High-performance storm windows
- Manual attic air sealing
- Roof-mounted PV
- Full HVAC replacement
- Heat pump water heater upgrade

Emerging and/or industrialized


- Prefabricated, panelized
 insulated wall over-cladding
- Thin-triple nail-fin windows
- Aerobarrier
- Insulated metal panel roof with PV
- All-in-one HVAC + DHW
- All-in-one HVAC (new VHP)
- Phenolic ductwork
- Programmable sub-panels

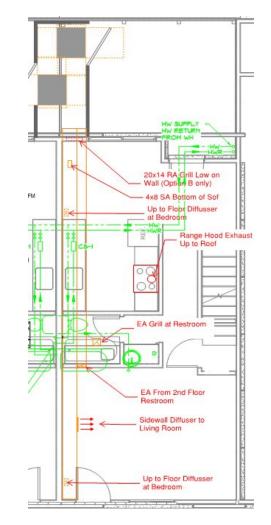
Panel Technology Demonstration

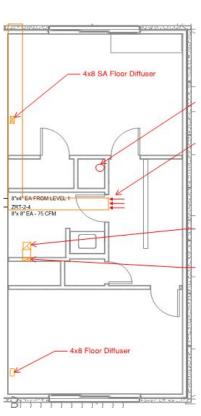
Dryvit Fedderlite-M Panel

- Number of lifts 100 panels
- Weight 2.0-2.5 psf
- Thickness 2"- 6"
- Insulation R8-R29
- Cost \$42/SF
- Site-installed window

New structured Panel

- Number of lifts
- Weight
- Thickness
- Insulation
- Cost
- Factory-installed window
- 40 panels 5-7 psf 6" - 8"


R20-R30


\$125/SF

Mechanical "Pod" Demonstration

It is imperative that decarbonization in this sector places community design, health and resilience at the center of decision making, rather than leading the conversation with greenhouse gas reduction targets.

Thank You