

# **SPUR HayWired Forum**

### Preparing At-Risk Communities and More for the Next Earthquake

November 1, 2018



# **Overview of EBMUD's Water System**





#### **Raw Water System**

- 7 reservoirs
- Aqueducts

#### **Treatment System**

- 3 inline WTPs
- 3 conventional WTPs

#### **Distribution System**

- 4,200 miles of pipeline
- 122 pressure zones
- 164 reservoirs
- 135 pumping plants
- 100 regulators/RCS

### EBMUD Distribution System Pipeline Inventory





## Univ Colo Water Network Resilience model (CUWNet) for USGS M7.0 HayWired Scenario

From USGS "HayWired Earthquake Scenario, Scientific Investigation Report Volume 2", April 18, 2018







# Damage predictions: pipeline distribution system



Discovery Ba

Vallejo

Pinole

Richmond

Martinez

Antioch

Bolinas

# 4,700 breaks and leaks 3,600 mainshock 1,100 aftershocks

Pacifica

San Rafael

Novato

Concor<u>East</u> 825 breaks and leaks 500 mainshock 325 aftershocks

San Leandro

Daly City San Francisco Bay

Hayward

Livermore



image Landsat © 2016 Google Data SIO, NOAA, U.S. Navy, NGA, GEBC

From USGS "HayWired Earthquake Scenario, Scientific Investigation Report Volume 2", April 18, 2018

## Predicted damage from mainshock and aftershocks





# HayWired Response, Restoration & Repairs





From USGS "HayWired Earthquake Scenario, Scientific Investigation Report Volume 2", April 18, 2018

# Post-Earthquake Water System Restoration Priorities



| Priority |                                                                        | Strategy or Plan                                                                                                                                                  |
|----------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Maintain System<br>Pressure                                            | Keep water flowing at a positive pressure to preserve as much access to clean drinking water                                                                      |
|          |                                                                        | as possible.                                                                                                                                                      |
| 2        | Address<br>Consumption Needs<br>for Drinking Water<br>and Firefighting | Focus on providing service to as many critical customers and fire hydrants as possible.                                                                           |
| 3        | Reserve Water<br>Storage in System                                     | Automatically actuated valves have already been<br>installed to preserve some water in storage<br>while still letting some water flow to meet<br>immediate needs. |
| 4        | Isolate Damaged Areas                                                  | Isolate severely damaged sections of pipeline, to maintain system pressure and reduce water loss after an earthquake event.                                       |
| 5        | Address Essential<br>Needs                                             | To maintain operations in the aftermath of an emergency, EBMUD will rely on several resources that have been acquired beforehand.                                 |

# Highlights of EBMUD Programs & Initiatives to Improve Resiliency

- EBMUD's Seismic Improvement Program
- · EBMUD's Pipeline Replacement Programs
  - Large Diameter Pipelines
  - Pipeline Rebuild
- Initiatives and studies to enhance reliability and resilience of EBMUD's water system:
  - Use of seismic resilient pipelines
  - Efforts to create a seismic resilient network of pipes

# Programs to Improve Resiliency SIP: 1995 - 2005



~~~



Program Scope - In 1995 Dollars (\$)

- Storage Reservoirs - **\$66.5M**
- Pumping Plants - **\$4.9M**
- Claremont Tunnel Improvements - \$24.5M
  - Southern Loop Installation - **\$30.6M**
- Fault Crossing Improvements - **\$49.5M**
- Buildings/Equipment Anchorages - \$8.5M
- Water Treatment Plants

# SIP Highlights: Claremont Tunnel Improvements



# SIP Highlights: Southern Loop Pipeline





# SIP Highlights: Fault Crossing Improvements





Figure 2-1. A typical Emergency Bypass System Assembly

### Tools to Further Enhance Reliability, Robustness & Resilience in a Water System

- 1. Enhance component reliability, particularly where reparability is poor
- 2. Provide redundancy where we don't have it (e.g., Transmission Mains, Major Facilities)
- 3. Valve Spacing in Transmission Mains
- 4. Valve Spacing in Distribution Mains
- 5. Resilient Distribution Grid -Coarseness



#### \$200M invested 1995-2005:

- Hardened dozens of major facilities
- Added a key transmission pipe for redundancy

1 4

# Highlights of *Post-SIP* Mitigation Programs: *LDP Projects*



#### **Completed Pipeline Replacements**

- · Lincoln Avenue Pipeline, Alameda
- · Dingee Pipeline, Oakland
- · Claremont Center, Oakland

#### Future Pipeline Replacements FY18-22

- MacArthur-Davenport, Oakland (in progress)
- Alameda Estuary Crossing, Oakland and Alameda
- Summit Pressure Zone Transmission, Berkeley
- · Grand Ave, Oakland
- Wildcat Aqueduct, Berkeley (parallel transmission line)
- International Blvd, Oakland
- Judy Lane, Lafayette





### Large Diameter Pipeline Replacement Program: Alameda Crossings





EBMUC

# Alameda Crossing No. 1



- Install 1,780 feet of 24inch HDD pipeline under estuary
- Install 5,000 feet of connecting 24-inch pipeline on each side in Oakland and Alameda
- Total cost \$15M
- EIR complete
- Design underway



# Highlights of *Post-SIP* Mitigation Programs: *Pipeline Rebuild*

#### Challenge: Leverage EBMUD's Pipeline Rebuild Program to Incrementally Strengthen Reliability, Robustness, and Resilience

- EBMUD ramping up replacement rate
- Piloting innovative methods to achieve lower costs, higher reliability
- Golden opportunity to further improve our:
  - Reliability
  - Robustness
  - Resilience



Current & Future Work to Enhance Reliability, Robustness & Resilience in a Water System

- 1. Enhance component reliability, particularly where reparability is poor
- 2. Provide redundancy where we don't have it (e.g., Transmission Mains, Major Facilities)
- 3. Valve Spacing in Transmission Mains
- 4. Valve Spacing in Distribution Mains
- 5. Resilient Distribution Grid -Coarseness



# Resilient Network Includes Reliable Backbone & Critical Pipelines



#### Backbone pipelines:

 Generally large, necessary to maintain storage in system

#### Critical pipelines:

 Feed health services, schools, jails/detention centers, EOTs, oil refineries, regional communication facilities, biotech firms



# Resilient Network Alignment Considerations





# Enhancing Component Reliability for Geohazards







48-inch flexible expansion joint construction on 48-inch transmission pipeline at Fontaine Street, Oakland





18-inch flexible expansion joint with ball marker on connecting ML&PCS pipe at Keith Avenue / Euclid Ave, Berkeley

48-inch flexible expansion joint construction on 60-inch transmission pipeline at El Portal Drive, San Pablo



8-inch HDPE pipeline butt fusion at El Portal Drive, San Pablo

2

# Enhancing Component Reliability: Seismic Testing Laboratory





#### **ORIENTED POLYVINYL CHLORIDE (PVCO) JOINTS**



# Example: Include social aspects when targeting pipe replacements



# Enhancing Social Resilience





# Summary: Next Steps to Advance Reliability, Robustness, and Resilience



- 1. Further develop robust planning and resilient network concepts:
  - Mapping and consideration of geo-hazards
  - Planning/design criteria such as grid coarseness, valve spacing, pipeline material selection
  - Always consider role of judgments and bias
- 2. Continue to promote social resilience
  - Continued emergency preparedness & response
  - Consider social impacts for R&R priorities
  - Public information
- 3. Continue to leverage existing R&R programs to increase system resilience vs just component reliability

# **Questions?**





#### Serge Terentieff