

Ideas + Action for a Better City
learn more at SPUR.org
tweet about this event:
@SPUR_Urbanist
\#TheHighCostofFreeDriving

The future of funding for transportation infrastructure

Alan Jenn, PhD
Institute of Transportation Studies
University of California, Davis

Two large disruptors for funding infrastructure

Much of the road infrastructure in the United States is paid for by the gasoline tax, a "use fee" for driving on the road.

The landscape of transportation has led to shortfalls in funding due to:

1. Improvements in fuel efficiency
2. Increased share of electric vehicles

The adoption of electric vehicles

The Rise of Electric Cars

By 2022 electric vehicles will cost the same as their internalcombustion counterparts. That's the point of liftoff for sales.

Projected annual sales Cumulative sales

- California's ZEV mandate and governor's goals will mean high adoption of plug-in electric vehicles (PEVs)
- Electric vehicles do not pay any fuel taxes towards funding infrastructure that they use

California's Senate Bill 1

- On April 28, 2017 the California legislature and governor passed SB1:
- \$0.12 per gallon increase in the motor vehicle fuel (gasoline) tax (Nov 1, 2017)
- $\$ 0.20$ per gallon increase in the motor vehicle fuel (diesel) tax (Nov 1, 2017)
- \$25-\$175 annual transportation improvement fee (Jan 1, 2018)
- \$100 annual registration fee for zero-emission motor vehicles (Jul 1, 2020)
- An additional complicating factor is that there is a repeal measure for SB1 on the ballot this November.

Expected shortfall from gasoline efficiency gains

What about alternative fuel vehicles?

The Institute of Transportation Studies at UC Davis is current conducting a study to assess the following pricing schemes on the its ability to provide sustainable funding, the complexity of the policy, and how difficult it is to implement:

- Electricity charge, $\$ / \mathrm{kWh}$
- Energy fee, \$/gas equivalent
- Road charge, uniform mileage fee, $\$ / \mathrm{mi}$
- Advanced road charge, incorporating other pricing mechanisms
- Potential mechanisms include: efficiency, occupancy, congestion, etc.

Pilot program: California Road Charge (SB 1077)

9 month road charge pilot MARCH

6 mileage reporting methods

Note: The heary vehicle mileage meter used by our heary vehicles
represented in the pilot makes up 1% of the total of 5,129 enrolled epresented in the pilot makes up 1% of the total of 5,129 enrolled vehicles.

86% satisfed with milegeg reporting metrod

All mileage reporting methods worked: - Manual options have the highe - Higher technology option are most difficult privacy but show great promise bu need further refinement and costly to administer

5000+ vehicles statewide

Top 3 Participating Vehicles

Rolling out road charges on a PEV platform

- Road charge only for electric miles (e-miles)
- Our study has constraints of operationalizing pricing exclusively for PEVs, but this actually offers several benefits:
- No need to get rid of gasoline tax
- Addresses fuel transition issue
- Gradual rollout is easier to implement since PEVs are lower volume
- Lower administrative costs: no need for refund checks

Key Takeaways

- The actual difference between fees (electricity versus energy versus mileage) is relatively marginal, the fees can be structured to provide similar revenues
- Key considerations are political feasibility, complexity of implementation, and costs
- Roll out on the electric vehicle platform can avoid many of the above issues

SFMTA

Demand-responsive parking pricing

SPUR Forum: The High Cost of Free Driving
July 12, 2018

Goals of project

- Reduce congestion
- Make parking easier to find
- Reduce circling for parking
- Help small businesses
- Transparent, data-driven rate-setting process

SFpark pilot

Demand-responsive pricing

- Transparent, data-driven process
- Adjustments every quarter based on occupancy
- 80% or above: $+\$ 0.25 /$ hour
- 60-80\%: no change
- Below 60\%: -\$0.25/hour
- Prices vary by block, time of day, weekday v . weekend

SFpark pilot evaluation

Hourly parking rates in SFpark areas
Before vs. after (10 rate changes)
On- and off-street rates

SFpark pilot evaluation

SFpark pilot evaluation

SFpark pilot evaluation

SFpark pilot evaluation

Fillmore District
Weekday Hourly Rates 3PM-6PM

Rate Effective July 2017
$\$.50-\$ 2.25$
\$2.50-\$4.75
\$5.00-\$6.75

SFpark pilot evaluation

Change in sales tax revenue, FY2006-2013
Food product, general retail and miscellaneous; chain stores excluded

SFpark pilot evaluation

Daily greenhouse gas emissions (metric tons)
Before vs. after
Pilot vs. control areas | Weekdays 9am to 6pm

$$
\text { Control before: } 2.7 \quad 6 \% \text { decrease } \text { after: } 2.5
$$

Citywide demand-responsive pricing

Answering important questions

- Question: will the City start to charge $\$ 8$ per hour everywhere?
- Answer:
- No
- In SFpark areas, no blocks are \$8/hour
- About 11% of rates are at $\$ 0.50 /$ hour, < 0.5\% have reached \$7/hour
- Average rates went down during the pilot
- Test of citywide rate adjustment: small overall average reduction in rates

Answering important questions

- Question: is this "surge" pricing?
- Answer:
- No
- Surge pricing only goes up-here, prices go up/down/same depending on demand
- Surge pricing is a sudden, unexpected change in price-this is regular, gradual price adjustments, announced in advance
- Surge pricing can be $1.5 x$ or $2 x$-this is small, incremental price adjustments (no more than $\$ 0.25 /$ hour each quarter)

Answering important questions

- Question: doesn't this just limit parking to those with more money?
- Answer:
- No
- Average rates went down during the pilot
- Usually much cheaper rates within a block
- Test of citywide rate adjustment: overall average rate will not change

Answering important questions

- Question: is this just a way for SFMTA to generate more revenue?
- Answer:
- No
- Overall average rate will not change
- Revenue impact expected to be minimal
- Data-driven, rather than budget-driven, approach to setting rates

Answering important questions

- Question: how will people know meter prices before they park at a meter?
- Answer:
- Interactive, mobile-friendly webmap on SFMTA.com shows all rates
- Regular users will learn where the rates differ

Thank you

Mari Hunter
Principal Planner, SFMTA mari.hunter@sfmta.com

The high cost of free driving

July 12, 2018

Overview

1. What kind of costs are we talking about?
2. What exactly are the high costs of free driving?
3. What can we learn from grocery bags?
4. How could we make transportation better with pricing?
5. Can pricing be equitable?

What kind of costs are we talking about?

The kind where the ones who pay did not create the problem in the first place.

Five high costs of free driving

部

1. Congestion in San Francisco costs drivers over \$2,000 a year in lost time.

For the whole Bay Area, jobs and population have grown 14% since the late 90 's, while congested delays per worker have grown by nearly 60%

2. Emissions from passenger cars is our region's single biggest contribution to climate change

Share of MMTCO2e for the Bay Area in 2014

3. Cars contribute to local air quality problems and hospitalizations from asthma

4. The more we drive the higher our collective risk of injury and death from collisions

5. Traffic is noisy

等学SPSR

What can we learn from grocery bags?

Which part of driving shouldn't be free to drivers? What priding tools do we have so far?

Policy		Description		
Gas tax			A charge on gasoline paid at the pump	Extra gallon of gas
:---				
VMT fee				
Toll A fee on each mile driven				
Cordon fee				
Parking fee				

Different pricing polices are more suited to different goals

[^0]Asking everyone to pay the full costs of their driving can change how people travel

N Driving

- 1 hour
- \$4.60 in gas (+ free parking)

Caltrain

- 1 hour 15 mins
- \$5.75 (+ getting to / from train)

Driving with pricing

- 45 mins
- \$12.60 in gas, toll and charged parking

部色SPUR

Equity must be considered across income levels, geography and mode

[^0]: - Little to no marginal effect

 Possible effect in some areas
 Possible effect with right policy design
 Positive indirect effect
 Positive marginal effect

