

Water Connects to Everything

Infrastructur e

Energ

Public Health

Environme

Forestr

Agricultur

Overview

- Peak Water: What does it mean?
- California's water: a quick glance
- New trends and thinking about solutions
- New challenges
- Moving forward
 - New state efforts
 - New Pacific Institute efforts

Peak Water

1010 1100 1190 1280 1370 1460 1550 1640 1730 1820 1910 2000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Ecosystem carrying capacities

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Renewable or Non-Renewable?

- Non-renewable resources are "stock" limited.
- Renewable resources are "flow" limited.

 Water uniquely exhibits characteristics of both: overall renewable but with some fixed, isolated non-renewable stocks.

Peak Renewable Water

Total Renewable Supply ———

But, how much can we actually use?? How much *should* we actually use?

Total Colorado River Flow at the Delta

Peak "Non-Renewable" Water

٠

Such as fossil groundwater (Central Valley, Ogallala, Libya, North China Plains, central India...)

Non-Renewable Groundwater Use: Ogallala Aquifer

Source: USGS, Fischer et al. Open-File Report 99-197

Approaching Peak Non-Renewable Groundwater

Observed groundwater trends in the Sacramento and San Joaquin River basins

Oct. 2003 to March 2009

(Image courtesy of NASA).

Peak "Ecological" Water

d

ol

Amount of Water Appropriated by Humans

So, What Does Peak Water Mean?

- We'll never "run out" of water overall. It is (mostly) renewable.
- Where water is "non-renewable" we will run into stock constraints.
- We will run up against "flow" limits that are a combination of natural and economic constraints.
- We are increasingly hitting (or exceeding) peak "ecological" water limits.

California's Water

California's Population

How does California use its water?

Challenges for California water

- Droughts, floods, and limited water availability (peak renewable)
- Overpumped aquifers (peak non-renewable)
- Water quality
- Collapsing Delta ecosystems and fisheries (peak ecological water)
- Growing demands
- Long-term climate change

How should we respond?

Sacramento-San Joaquin Delta

- The Delta is the "heart" of California's water system.
- Historically a very rich inland aquatic ecosystem.
- It is the center of California's water distribution system: from North/Sierra to South/Coastal.
- Ecosystems are collapsing there and new laws and court rulings say water must be returned to the environment.

Sources: California Department of Water Resources, Delta Habitat Conservation and Conveyance Program. Graphics reporting by **Bettina Boxall**

Some New Challenges: Energy Climate Money

